HOLONOMY INVARIANCE: ROUGH REGULARITY AND APPLICATIONS TO LYAPUNOV EXPONENTS par
نویسندگان
چکیده
Résumé. — Un cocycle lisse est un produit gauche qui agit par des difféomorphismes dans les fibres. Si les exposants de Lyapounov extremaux du cocycle coincident alors les fibres possèdent certaines structures qui sont invariantes, à la fois, par la dynamique et par un pseudo-groupe canonique de transformations d’holonomie. Nous démontrons ce principe d’ invariance pour les cocycles lisses au dessus des difféomorphismes conservatifs partiellement hyperboliques, et nous en donnons des applications aux cocycles linéaires et aux dynamiques partiellement hyperboliques.
منابع مشابه
Analytic Regularity of Solutions of Livsic's Cohomology Equation and Some Applications to Analytic Conjugacy of Hyperbolic Dynamical Systems
We study Livsic's problem of nding satisfying X = where is a given function and X is a given Anosov vector eld. We show that, if is a continuous solution and X; are analytic, then is analytic. We use the previous result to show that if two low-dimensional Anosov systems are topologically conjugate and the Lyapunov exponents at corresponding periodic points agree, the conjugacy is analytic. Anal...
متن کاملBirkhoff Averages for Hyperbolic Flows: Variational Principles and Applications
Abstract. We establish a higher-dimensional version of multifractal analysis for hyperbolic flows. This means that we consider simultaneously the level sets of several Birkhoff averages. Examples are the Lyapunov exponents as well as the pointwise dimension and the local entropy of a given measure. More precisely, we consider multifractal spectra associated to multi-dimensional parameters, obta...
متن کاملA Converse Lyapunov Theorem with Applications Toiss - Disturbance Attenuation
This work provides a generalization of a converse Lyapunov theorem for systems that do not have the regularity property on the invariant sets. As an application , we provide Lyapunov-function like necessary and suucient characterizations for the problem of ISS-disturbance attenuation.
متن کاملA Variation Embedding Theorem and Applications
Fractional Sobolev spaces, also known as Besov or Slobodetzki spaces, arise in many areas of analysis, stochastic analysis in particular. We prove an embedding into certain q-variation spaces and discuss a few applications. First we show q-variation regularity of Cameron-Martin paths associated to fractional Brownian motion and other Volterra processes. This is useful, for instance, to establis...
متن کاملLyapunov Functions for Differential Inclusions and Applications in Physics, Biology, and Climatology
We investigate additional regularity properties of all globally definedweak solutions, their global and trajectory attractors for classes of semi-linear parabolic differential inclusions with initial data from the natural phase space. The main contributions in this note are: (i) sufficient conditions for the existence of a Lyapunov function for a class of parabolic feedback control problems; (i...
متن کامل